Abstract: In this talk, we study the “twisted” Poincare duality of smooth Poisson manifolds, and show that, if the modular symmetry is semisimple, that is, the modular vector is diagonalizable, there is a mixed complex associated to the Poisson complex which, combining with the twisted Poincare duality, gives a Batalin-Vilkovisky algebra structure on the Poisson cohomology, and a gravity algebra structure on the negative cyclic Poisson homology. This generalizes the previous results obtained by Xu et al for unimodular Poisson algebras. We also show that these two algebraic structures are preserved under Kontsevich's deformation quantization, and in the case of polynomial algebras they are also preserved by Koszul duality. This talk is based on a joint work with Liu, Yu and Zeng.
Join Zoom Meeting:
https://zoom.us/j/82918626935?pwd=b2JVWFZnb0ZRVmsvdmE2Q1E3Syt6dz09
Meeting ID:829 1862 6935
Password:334548