On the polar Orlicz-Minkowski problems
主 题: On the polar Orlicz-Minkowski problems
报告人: Prof. Baocheng Zhu (HUBEI MINZU UNIVERISITY)
时 间: 2018-06-11 14:00-16:00
地 点: Room 1568, Sciences Building No. 1
Abstract: We willtalk about the polar Orlicz-Minkowski problems: under what conditions on anonzero finite measure $\mu$ and a continuous function $\phi$ there exists aconvex body K as an optimizer of a specific optimization problem. Thesolvability of the polar Orlicz-Minkowski problems is discussed under differentconditions. In particular, under certain conditions on $\phi$, the existence ofa solution is proved for a nonzero finite measure $\mu$ on unit sphere$S^{n-1}$ which is not concentrated on any hemisphere. Another part of thistalk deals with the p-capacitary Orlicz-Petty bodies. In particular, theexistence of the p-capacitary Orlicz-Petty bodies is established and thecontinuity of the p-capacitary Orlicz-Petty bodies is proved.
朱保成,湖北民族大学硕士生导师,特聘教授。博士研究生毕业于西南大学,加拿大“大西洋数学研究中心”博士后,湖北省人才计划楚天学者“楚天学子”。主持在研国家自然科学基金青年项目1项,参与国家自然科学基金3项。近5年来,在极小几何表面积、Orlicz-Brunn-Minkowski理论以及Minkowski问题等方面做了一些工作,部分成果发表在 “Adv. Math.”、“Int. Math. Res. Not.”、“Indiana Univ. Math. J.”、“J. Geom. Anal.”、“Proc. Amer. Math. Soc.”以及“中国科学”等期刊上。曾受邀出席2014年世界数学家大会卫星会议 (韩国举行) 并做30分钟报告。