课程号00130201

课程名称:高等数学B

开课学期:

学分:    5

先修课程:

基本目的:

1.通过此课的学习,使有关专业的一年级学生掌握一元函数微积分、多元函数微积分、级数与矢量代数的基本概念、基本理论以及基本计算技能,了解常微分方程的基本求解方法,为学习有关专业课奠定必要的数学基础。

2.培养学生的直观猜测能力、严格逻辑推理能力和抽象思维能力,以及运用数学知识解决实际问题的能力,培养学生严谨的科学精神。

内容提要:

第一学期:

1.一元函数的概念与极限(实数基本性质、初等函数与一般函数、序列与极限、函数极限与连续性);约12学时。

2.一元函数微积分的基本概念(微商的概念、初等函数的微商、复合函数与反函数的微商、微分与近似计算、高阶导数、原函数与不定积分、定积分);约10学时。

3.微积分基本定理与积分的计算(牛顿-莱布尼茨公式、换元与分部积分、有理式的积分法、定积分简单应用与近似计算);约8学时。

4.微分中值定理与泰勒公式(拉格朗日中值定理、柯西中值定理与求极限的罗比达法则、泰勒公式、极值问题、函数的单调与凸凹性);约10学时。

5.向量代数与空间解析几何初步(向量的概念与运算、坐标表示、空间直线与平面的方程、二次曲面的分类);约6学时。

6.多元函数微分学(多元函数的概念、多元函数的极限与连续性、偏导与全微分、链规则、多元函数的微分中值定理与泰勒公式、隐函数存在定理、极值问题);约14学时。

7.机动,可能的节假日、期中考试等:约4学时。

第二学期:

  1. 重积分(二重积分定义与计算、三重积分定义与计算、重积分应用举例);约10学时。
  2. 曲线积分与曲面积分(第一型与第二型曲线积分、格林公式、第一型与第二型曲面积分、高斯公式与斯朵克司公式、场论初步);约10学时。
  3. 常微分方程初步(常微分方程的概念、一阶方程求解的分离变量法与其他初等解法、解的存在唯一性定理、二阶线性方程的解的结构、二阶线性常系数方程的解法);约10学时。
  4. 级数(柯西收敛原理与级数的收敛性、正项级数、任意项级数、函数项级数、幂级数、泰勒级数);约12学时。
  5. 广义积分与含参变量积分(广义积分及其收敛性、含参变量正常与广义积分的性质、Beta函数与Gamma函数);约8学时。
  6. 傅氏级数(三角函数系、傅氏级数展开、富氏级数的收敛性定理、贝塞尔不等式与巴斯瓦尔等式、傅氏变换)。约8学时。
  7. 机动,可能的节假日、期中考试等:约4学时。

教学方式:课堂讲授

教材与参考书:

1、李忠周建莹,高等数学,北京大学出版社

2、文丽吴良大:高等数学(物理类),北京大学出版社。

学生成绩评定方法:平时课堂、作业、期中考试50%, 期末考试50%

课程修订负责人:柳彬

 

 

杨家忠

 

TOP
XML 地图